Propagation of perturbations in protein binding networks Sergei Maslov Brookhaven National Laboratory - Experimental interaction data are binary instead of graded → it is natural to study topology - Very heterogeneous number of binding partners (degree) - One large cluster containing ~80% proteins - Perturbations were analyzed from purely topological standpoint - Ultimately one want to quantify the equilibrium and dynamics: time to go beyond topology! #### Law of Mass Action equilibrium - In equilibrium D_{AB}=F_A F_B/K_{AB} where the dissociation constant K_{AB}= r^(off)_{AB}/ r^(on)_{AB} has units of concentration - Total concentration = free concentration + bound concentration \rightarrow $C_A = F_A + F_A F_B / K_{AB} \rightarrow$ $F_A = C_A / (1 + F_B / K_{AB})$ - In a network $F_i = C_i/(1 + \sum_{\text{neighbors } j} F_j/K_{ij})$ - Can be numerically solved by iterations #### What is needed to model? - A reliable network of reversible (non-catalytic) proteinprotein binding interactions - CHECK! e.g. physical interactions between yeast proteins in the BIOGRID database with 2 or more citations. Most are reversible: e.g. only 5% involve a kinase - Total concentrations C_i and sub-cellular localizations of all proteins - V CHECK! genome-wide data for yeast in 3 Nature papers (2003, 2003, 2006) by the group of J. Weissman @ UCSF. - VERY BROAD distribution: C_i ranges between 50 and 10⁶ molecules/cell - Left us with 1700 yeast proteins and ~5000 interactions - in vivo dissociation constants K_{ij} - OOPS! ②. High throughput experimental techniques are not there yet ### Let's hope it doesn't matter - The overall binding strength from the PINT database: $<1/K_{ij}>=1/(5nM)$. In yeast: $1nM \sim 34$ molecules/cell - Simple-minded assignment K_{ij}=const=10nM (also tried 1nM, 100nM and 1000nM) - Evolutionary-motivated assignment: K_{ij}=max(C_i,C_j)/20: K_{ij} is only as small as needed to ensure binding given C_i and C_j - All assignments of a given average strength give ROUGHLY THE SAME RESULTS # Robustness with respect to assignment of K_{ii} # Numerical study of propagation of perturbations - We simulate a twofold increase of the abundance C₀ of just one protein - Proteins with equilibrium free concentrations F_i changing by >20% are significantly perturbed - We refer to such proteins i as concentration-coupled to the protein 0 - Look for cascading perturbations ### Resistor network analogy - Conductivities σ_{ij} dimer (bound) concentrations D_{ij} - Losses to the ground σ_{iG} free (unbound) concentrations F_i - Electric potentials relative changes in free concentrations (-1)^L δF_i/F_i - Injected current initial perturbation δC₀ ### What did we learn from this mapping? - The magnitude of perturbations` exponentially decay with the network distance (current is divided over exponentially many links) - Perturbations tend to propagate along highly abundant heterodimers (large σ_{ii}) - F_i/C_i has to be low to avoid "losses to the ground" - Perturbations flow down the gradient of C_i - Odd-length loops dampen the perturbations by confusing (-1)^L δF_i/F_i | L | variable K_{ij} , | constant | constant | constant | constant | all pairs at | |---|---------------------|-----------------|------------------|----------------------|----------------------------|--------------| | | mean= 5nM | $K_{ij} = 1$ nM | $K_{ij} = 10$ nM | $K_{ij} = 0.1 \mu M$ | $K_{ij} = 1\mu \mathbf{M}$ | distance L | | 1 | 2003 | 2469 | 1915 | 1184 | 387 | 8168 | | 2 | 415 | 1195 | 653 | 206 | 71 | 29880 | | 3 | 15 | 159 | 49 | 8 | 0 | 87772 | | 4 | 2 | 60 | 19 | 0 | 0 | 228026 | | 5 | 0 | 3 | 0 | 0 | 0 | 396608 | SM, I. Ispolatov, PNAS in press (2007) What conditions make some long chains good conduits for propagation of concentration perturbations while suppressing it along side branches? - Perturbations propagate along dimers with large concentrations - They cascade down the concentration gradient and thus directional - Free concentrations of intermediate proteins are low SM, I. Ispolatov, PNAS in press (2007) ### Implications of our results ## Cross-talk via small-world topology is suppressed, but... - Good news: on average perturbations via reversible binding rapidly decay - Still, the absolute number of concentrationcoupled proteins is large - In response to external stimuli levels of several proteins could be shifted. Cascading changes from these perturbations could either cancel or magnify each other. - Our results could be used to extend the list of perturbed proteins measured e.g. in microarray experiments #### Genetic interactions - Propagation of concentration perturbations is behind many genetic interactions e.g. of the "dosage rescue" type - We found putative "rescued" proteins for 136 out of 772 such pairs (18% of the total, P-value 10⁻²¹⁶) SM, I. Ispolatov, PNAS in press (2007) #### Intra-cellular noise - Noise is measured for total concentrations C_i (Newman et al. Nature (2006)) - Needs to be converted in biologically relevant bound (D_{ii}) or free (F_i) concentrations - Different results for intrinsic and extrinsic noise - Intrinsic noise could be amplified (sometimes as much as 30 times!) - 3-step chains exist in bacteria: anti-antisigma-factors → anti-sigma-factors → sigmafactors → RNA polymerase - Many proteins we find at the receiving end of our long chains are global regulators (protein degradation by ubiquitination, global transcriptional control, RNA degradation, etc.) - Other (catalytic) mechanisms spread perturbations even further - Feedback control of the overall protein abundance? #### Future work ### Non-specific vs specific - How quickly the equilibrium is approached and restored? - Dynamical aspects of noise How specific interactions peacefully coexist with many non-specific ones #### Iaroslav Ispolatov Research scientist Ariadne Genomics Kim Sneppen NBI, Denmark #### THE END